Secure Multi-Party Computation

CS-523

Wouter Lueks | February 25,2025 | v1.1.0

Some slides inspired by Jean-Pierre Hubaux

Introduction |
Secure Multi-Party Computation
(SMC)

Course aim: learn toolbox for privacy engineering

Application Layer

tool cryptography
for building PETS as main technique

Goals
What should you learn today?

= Basic understanding of two SMC
techniques

= Know when SMC is a useful tool in
creating privacy-friendly systems

= Understand how to express your
problem as a circuit to enable MPC

= Understand key properties:
« Communication and computation cost
« Trust assumptions
» Guarantees with respect to inputs

= Be able to use SMC as a building block
(by describing which function it
computes)

Overview

SMC on one-slide (2-party

version)
&Alice ' Bob
Input: x Input: v

> >

> >

SMC Protocol

Output: F(x, v)

= A secure 2-party protocol enables two
parties with private inputs x and y to
compute a function F(x, y)

= Security property: without either party
learning anything more than what can
be derived from the output

= Correctness: output is correct

= Types of circuits (today): Boolean
circuits (with logic gates), and arithmetic
circuits (with addition/ multiplication
gates)

= Secure Multi-party Computation: have n
parties with private inputs x,, ..., X,
compute F(x,, ..., X,)

Example

Secure Auction
& 1 = |[n auction, multiple parties bidding for
an item (say, a house). Want to find the
Input: bid, Input: bid, Input: bid, party that bid highest. Privacy: without

revealing anybody else’s bid.

= Define function:
F(bidy, ..., bids) = (i,bid,) s.t.Vj bid; < bid;
SMC Protocol = (This function is not really a circuit, we’ll
fix that later)

= SMC protocol guarantees: none of the
parties learn more than the output.

Output: F(bid,, bid,, bid;)

High Level Structure “

>
High-Level < %
description of - A boolean/arithmetic circuit C <
function F to that realizes / implements F ‘
compute Protocol for
P computing C

Your Problem SMC Protocol/Transformation

Example function F: A

F(bidy, ...,bid3) = (i,bid;) s.t.Vj bid; < bid; :)D{Do—'—:}_o
D

Example Logic Circuit C
(Not implementing F on the left)

Secy r|’[= Security property: without either party
learning anything more than what can

|[deal-world €(Ulvalent be derived from the output

Bob Alice Bob

Alice

Input: x Input: v Input:x\:
>
= > —
< same

Trusted Party
SMC Protocol leakage

When reasoning about SMC
protocols, you can always
Output: F(X, y) pretend” that they are executed

Output: F(x, v)

in the ideal world. This is great,

because now you do not need to
REAL WORLD think about the details of the IDEAL WORLD
construction.

Example
What does Alice learn?

&Alice ' Bob

Input: x Input: y
>
<
>
<

SMC Protocol

Output: F(x, v)=x>y <—I

= Simple example function: F(x, y) =x >y

= Assume: SMC protocol is secure, i.e., we
can reason about it using the ideal

world.
= Assume: only Alice learns the output

= Question: what does Alice learn about
Bob’s input?

Answer: if the answer is true Alice learns an

upper bound (x) on Bob’s value, and a
lowerbound otherwise.

Example and caveat
What does Alice learn?

= As on the previous slide, but now
suppose Alice and Bob run the same
protocol several times.

Alice Bob

= Bob will use the same input y for every
Input: x Input: v

run.
> > = Question: what can Alice learn about
> > Bob's value y?

SMC Protocol

Answer: Alice can change her inputs, she can

Take Away

Even though the SMC protocol is itself secure, then use binary search to learn Bob’s exact

value.

the composition of the SMC protocol with other
parts of the system does not have to be secure

Threat Models .
Honest but Curious vs Malicious

= So far, treated the SMC protocol as a
black box where parties can only control
what they input.

= Must take into account threat model aka
what can parties do. Today we consider
two:

= Honest but Curious*: Parties will follow
the SMC protocol honestly, but try to
learn as much as possible from the
messages they receive

= Malicious: Parties can arbitrarily deviate
from the SMC protocol to learn as much
as possible

Today’s Class

Mostly in the Honest-but-
Curious setting.

This is not —usually —a
realistic assumption! There
are ways to fix this, but these
are often costly.

10

Secure Multi-Party Computation

A generic solution?

= There exist SMC protocols (both 2 party
and multi-party) that can compute any
Boolean circuit

= Therefore: SMC protocols are universal:
can solve any problem!

= So why do we not always use them?
Custom protocols are often “better”:

« Might use less bandwidth
« Might be faster, i.e., use less computation

« Might use fewer rounds of
communication

« Might work even if all parties are not
online at the same time

11

&Alice I Bob

Input: x Input: v
>
<
>
<

SMC Protocol

Output: F(x, v)

Any logic

circuit!

A two-party secure
multi-party protocol:

Yao's garbled circuit

Overview -
Yao's Garbled Circults

L P §

Two Parties

Bgh S :
:)O{:)OJ—}Q ‘ <

Protocol for

S

A logic circuit C computing C
g Transformation

Parties are
Honest but Curious

Key Idea

Gates as Truth Tables

Logic Gate
alefe
0O 0 O
o 1 1
1 0 1
| a4

Truth Table

14

Step 1: Assign random labels to each possible input value

A [label BB [iabel |
0 WAO 0 WBO

1

Step 2: Create encrypted truth table

A8 o

wy
w,

Wi

Wi

Wy
Ws
Wy
Ws

1 WB1

Enc(W) | W3, 0)
Enc(W) II| Wi, 1)
Enc(W, | Wg, 1)
Enc(W, II| Wi, 1)

Step 3: Shuffle output
column to create a
garbled gate

Enc(W/ I Wy, 1)
Enc(W, | Wy, 1)
Enc(W) 1| W2, 0)
Enc(W) I| W2, 1)

Note: we use that if
key is wrong Dec fails

Garbling a Single Gate A 0 '

Yao's Garbled Circults

Ly W o
0 W/{’ 0 Wg’

Garbler 1 W,

Step 1. Compute
garbled gate

Step 2. Send garbled
gate and Garbler’s
input label

1

B
Logic Gate

Input: b

Depends on
Garbler’s input a

Ws

Evaluator
Enc(Wi | W2, 1)
Enc(Wi | Wg, 1)
Enc(w? II| w2, 0)
Enc(W, Il Wz, 1) wa

Step 3. Get label W2
Requires magic protocol! (why?) for Evaluator’s input b

Step 4. Find row that
decrypts for w2 || w2

Next slide: Oblivious Transfer

Intermezzo
Oblivious Transter

OWf?

Garbler/ 1 Wjp
Sender

Wg

Wy
1-out-of-2

Oblivious Transfer

16

Input: b

Evaluator
Receiver

b

Key Properties:

- Sender learns nothing
about the bit b

« Receiver learns

b .
> Whg nothing about w2} ~?

Simple OT Protocols
(from Public Key encryption)

Garbling a Single Gate A 0

Yao's Garbled Circults

Ly W o
0 W/{’ 0 Wg’

Garbler 1 W,

Step 1. Compute
garbled gate

Step 2. Send garbled
gate and Garbler’s
input label

1

B

Logic Gate
Input: b

Depends on
Garbler’s input a

1
We Evaluator

o
Enc(Wi Il W§, 1)
Enc(Wi | Wg, 1)
Enc(wy | W3, 0)
Enc(W) | W3, 1) we

>

Wg

W

> 1-out-of-2 b
g Obvlious transfer > Wy

Step 3. Send label W2
for Evaluator'sinputb

Step 4. Find row that
decrypts for w2 || w2

18

FU“ Cerl.“tS Wy |— Wanrp)
Recursion to the rescue! ,”

< Step 1. Assign random Step 2. Generate garbled gates

.= labels to each wire and send to the evaluator

£
5 I o

.S n WAO Wé)l Wé)z WAO/\B Enc(Wj | ngy Wihs) Enc(Ways I Wélz’ 1)

s Enc(Wi | W5,, Wirg) Enc(Wirg Il Wg,, 1)

s Bl v own ow, wie

o 1 2 Enc(Wy I| W, Wihg) Enc(Wixs | Wg,, 1)

v

G Enc(Wy I| Wg,, Wikg) Enc(Wihs | Wg,, 0)

s Step 3. Obtain generator's Step 4. Obtain evaluator’s Step 5. Evaluate gates in
% inputs (W (own) inputs (WBbll, WBbzz) via ordertoobtain

= oT Intermediate wire values
v (Wy45) and final outputs

Yao's Garbled Circuits
Properties

= Evaluating any circuit requires only a
constant number of rounds (one
message to send the garbled circuit; and
a bunch of (parallel) OTs to get the
evaluator’s inputs).

= Communication cost is linear in the
number of gates

= Computation cost is is linear in the
number of gates

Example: Circuits can be slow. For
example, evaluating 1 AES block: 17
seconds and requires 77 MB of data.

&Alice

Input: x Input: v
>
<
>
<

Garbled Circuit

Output: F(x, v)

A multi-party secure
multi-party protocol:

Ben-Or, Goldwasser,
Wigderson (BGW)

For arithmetic circuits

Overview
BGW Circults

N Parties

S

Parties are
Honest but Curious

% —

Arithmetic circuit C

>
>

<
<

Protocol for
computing C

Transformation

Two Settings

N Parties. -- They compute
themselves

23

e

outsource
data (privately)

N servers
compute

/“
iBg |

Building Block T :
Add|t|Ve Secret Shares adversary learns nothing

about the shared value x

Operate over a field F (for example, integers
modulo a prime p)

= Share: given a value x € F we compute

shares xq, ..., xy: l
« Sample x,, ..., xy uniformly at random from F

/
>
Xi
« Setx; =x — Zf;z} x; (over F) Value: x
XN

« We denote [x] = {x,, ..., xy} the sharing of x

= Reconstruction: given a sharing [x] =

{xq, ..., xy}output x = YN . x;

N Parties/Servers

First Step
Sharing Inputs

All drawings with *
N=3 parties

Value:

X2
Vi
V3

p

2

alue: x

»

»

<
<

Z)

Value: z

) QE—
X2
Value: x x‘

Input sharing setting: each party
secret shares their inputs to each
of the other parties (and keeps one

share)

Outsourced computation setting:
parties with data secret share their
inputs to the compute nodes

Computing on shares
Addition (Add-Protocol)

General Structure/Invariant: the parties in the
protocol hold secret shares of the circuit wire
values.

Here: Party i holds secret shares s;, v; such
that: s =);s; and v =) v;.

Goal: Each party must obtain t; such that
t =Y;ti =s+vorinotherwords [t] = [s + V]

Algorithm:
= Each party (locally!) sets ¢t; = s; + v;

Computing on shares !
Addition (Add-K
Protocol)

General Structure/Invariant: the parties in the
protocol hold secret shares of the circuit wire
values. K

Here: Party i holds secret shares s; such that:
s =Y;s; and Kis a public value

Goal: Each party must obtain t; such that
t =Y;ti =s+ K orinotherwords [t] =[s + K]

Want to add a

public value K
Algorithm:

= Party 1: locally sets t; = s; + K
= Other parties i: locally set t; = s;

Computing on shares
Multiplication (Mult-K Protocol)

General Structure/Invariant: the parties in the
protocol hold secret shares of the circuit wire
values. K

Exercise :). S h— t

Want to multiply
by a public
value K

Intermezzo
Beaver Triplets

Computing multiplication gates is harder. We
use a trick.

A Beaver triplet (g, b, ¢) such that a and b are
random (in the field) and ¢ = ab.

We assume that the parties hold secret shares
of the Beaver triplet: [a], [b], [c]

For security it is essential that no parties know
the values q, b, c. They can only know their
secret share. As a result: constructing Beaver
triplets is hard. Usual tricks: trusted third party,
using Homomorphic Encryption, or from OT.

Computing on shares . .
Multiplication (Mul-Protocol) , :n—t

Input: Party i holds secret shares Algorithm:
s;, vy such that: 1. Each party locally computes a share of
s=;siand v =2, v [d] = [s - a] and broadcasts it. Each

as well as shares a;, by, ¢;, for a arty reconstructs and learns d
jresh Beaver Triplet (a, b, c) 2. lCE)achyparty locally computes a share of
Goal: Each party must obtain ¢ [e] = [v- b] and broadcasts it. Each
suchthatt = >, t; = sv or in other party reconstructs and learns e
words [t] = [sv] 3. Locally compute a share of:

sv] = de + d[b] + ela] + [c]

A useful identity: (note that this requires only additions
sv=(6 —a+a)(v —b+b) and multiplications by constants)
=(d+a)(e+Db)

=de+ db + ae + ab
=de+db+ea+c

Alternative |
Shamir’s Secret Sharing

Operate over a field F (for example, integers
modulo a prime p)

Additive secret sharing requires all N shares
to reconstruct. To add robustness (at the
cost of privacy), could use Shamir’s secret
sharing so that you can reconstruct given
only t values.

Privacy Property: in a t-out-of-N Shamir
secret sharing scheme, an adversary given

at most t — 1 shares, learns nothing about
the shared value x

31

= Share: given a value x € F we
compute shares x4, ..., xy:

« Sample aq, ..., a,_; uniformly at
random from FF to construct
secret-sharing polynomial
fX) =x+a X+ +a_ X1

« Setx; = f(i) fori € {1,...,N}

« We denote [x] = {x4, ..., xy]} the
sharing of x

= Reconstruction: given t shares
Xi,, -, X;, from parties iy, ..., ir
reconstruct the secret through
polynomial evaluation.

BGW Circuits
Properties

= The number of rounds is linear in the
circuit depth (we need openings for
each multiplication gate at each level)

= Computation cost is linear in the
number of gates

= Communication cost is linear in the
number of multiplication gates.

Practical Performance: Computing
arithmetic circuits can be quite fast only a
few modular computations per gate.

N Parties

A

A

v

Arithmetic Circuit

Output: F(xy, ..., Xy)

32

Applications

Applications of MPC
Estonian Study

= Estonian CS programs: 43% of students
failed to graduate. Question: Why?

= Hypothesis: everybody gets nice IT job
before graduating

= Privacy legislation prevent sharin% of
data from Tax Board (10M records) and
Ministry of Education (600k records)

= Use of MPC resulted in higher accuracy
than using other data anonymization
techniques (e.g., k-anonymity see Data
Publishing Part I) that were also legally
acceptable

34

Tax Board Ministry of
Education

N/

U
sharemind

ar 4 CYBERNETICA

Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, Riivo Talviste: Students and Taxes: a Privacy-Preserving Study Using Secure
Computation. Proc. Priv. Enhancing Technol. 2016(3): 117-135 (2016). https://eprint.iacr.org/2015/1159.pdf

https://eprint.iacr.org/2015/1159.pdf

Applications of MPC
Estonian Study ||

= Technical solution built on Sharemind'’s
MPC framework that operates on secret-
shared data (e.g., see BGW before)

= Challenges faced by Cybernetica:

« Technical implementation was difficult,
especially to run at this scale

« Convince stake-holders that this
approach is actually secure

« Operational support: ensure assumptions
are met, manuals, deployment support
= Time to run is massive:
« 384 hours

« With 2x 2-core machine, and 1x 12-core
machine

Tax Board Ministry of
Education

N

sharemlnd

ar 4 CYBERNETICA

35

S

" Contact

7
%1, |\\‘\

Vi,

\J

Wouter Lueks
CISPA Helmholtz Center for
Information Security

lueks@cispa.de
https://wouterlueks.nl/

36

	Default Section
	Slide 1: Secure Multi-Party Computation
	Slide 2: Introduction Secure Multi-Party Computation (SMC)
	Slide 3: Goals What should you learn today?
	Slide 4: Overview SMC on one-slide (2-party version)
	Slide 5: Example Secure Auction
	Slide 6: High Level Structure
	Slide 7: Security Ideal-world equivalent
	Slide 8: Example What does Alice learn?
	Slide 9: Example and caveat What does Alice learn?
	Slide 10: Threat Models Honest but Curious vs Malicious
	Slide 11: Secure Multi-Party Computation A generic solution?
	Slide 12: A two-party secure multi-party protocol: Yao’s garbled circuit
	Slide 13: Overview Yao’s Garbled Circuits
	Slide 14: Key Idea Gates as Truth Tables
	Slide 15: Garbling a Single Gate Yao’s Garbled Circuits
	Slide 16: Intermezzo Oblivious Transfer
	Slide 17
	Slide 18: Garbling a Single Gate Yao’s Garbled Circuits
	Slide 19: Full Circuits Recursion to the rescue!
	Slide 20: Yao’s Garbled Circuits Properties
	Slide 21: A multi-party secure multi-party protocol: Ben-Or, Goldwasser, Wigderson (BGW) For arithmetic circuits
	Slide 22: Overview BGW Circuits
	Slide 23: Two Settings
	Slide 24: Building Block Additive Secret Shares
	Slide 25: First Step Sharing Inputs
	Slide 26: Computing on shares Addition (Add-Protocol)
	Slide 27: Computing on shares Addition (Add-K Protocol)
	Slide 28: Computing on shares Multiplication (Mult-K Protocol)
	Slide 29: Intermezzo Beaver Triplets
	Slide 30: Computing on shares Multiplication (Mul-Protocol)
	Slide 31: Alternative Shamir’s Secret Sharing
	Slide 32: BGW Circuits Properties
	Slide 33: Applications
	Slide 34: Applications of MPC Estonian Study
	Slide 35: Applications of MPC Estonian Study II
	Slide 36: Contact

