
Secure Multi-Party Computation
CS-523

Wouter Lueks | February 25, 2025 | v1.1.0

Some slides inspired by Jean-Pierre Hubaux

Introduction
Secure Multi-Party Computation
(SMC)

2

Course aim: learn toolbox for privacy engineering

tool
for building PETS

cryptography
as main technique

Network Layer

Application Layer

Goals
What should you learn today?

3

▪ Basic understanding of two SMC
techniques

▪ Know when SMC is a useful tool in
creating privacy-friendly systems

▪ Understand how to express your
problem as a circuit to enable MPC

▪ Understand key properties:
• Communication and computation cost
• Trust assumptions
• Guarantees with respect to inputs

▪ Be able to use SMC as a building block
(by describing which function it
computes)

Overview
SMC on one-slide (2-party
version)

4

▪ A secure 2-party protocol enables two
parties with private inputs x and y to
compute a function F(x, y)

▪ Security property: without either party
learning anything more than what can
be derived from the output

▪ Correctness: output is correct

▪ Types of circuits (today): Boolean
circuits (with logic gates), and arithmetic
circuits (with addition/multiplication
gates)

▪ Secure Multi-party Computation: have n
parties with private inputs x1, …, xn
compute F(x1, …, xn)

Input: x Input: y

SMC Protocol

Output: F(x, y)

Alice Bob

Example
Secure Auction

5

▪ In auction, multiple parties bidding for
an item (say, a house). Want to find the
party that bid highest. Privacy: without
revealing anybody else’s bid.

▪ Define function:
𝐹 𝑏𝑖𝑑1, … , 𝑏𝑖𝑑3 = 𝑖, 𝑏𝑖𝑑𝑖 𝑠. 𝑡. ∀𝑗 𝑏𝑖𝑑𝑗 ≤ 𝑏𝑖𝑑𝑖

▪ (This function is not really a circuit, we’ll
fix that later)

▪ SMC protocol guarantees: none of the
parties learn more than the output.

Input: bid1 Input: bid2 Input: bid3

SMC Protocol

Output: F(bid1 , bid2 , bid3)

High Level Structure 6

A boolean/arithmetic circuit C
that realizes / implements F

SMC Protocol/Transformation

Protocol for
computing C

High-Level
description of
function F to

compute

Your Problem

Example function F:
𝐹 𝑏𝑖𝑑1, … , 𝑏𝑖𝑑3 = 𝑖, 𝑏𝑖𝑑𝑖 𝑠. 𝑡. ∀𝑗 𝑏𝑖𝑑𝑗 ≤ 𝑏𝑖𝑑𝑖

Example Logic Circuit C
(Not implementing F on the left)

Security
Ideal-world equivalent

7
▪ Security property: without either party

learning anything more than what can
be derived from the output

Input: x Input: y

SMC Protocol

Output: F(x, y)

Alice Bob

Input: x Input: y

Output: F(x, y)

Alice Bob

Trusted Party

x y

REAL WORLD IDEAL WORLD

same
leakage

When reasoning about SMC
protocols, you can always

“pretend” that they are executed
in the ideal world. This is great,

because now you do not need to

think about the details of the
construction.

Example
What does Alice learn?

8

▪ Simple example function: F(x, y) = x > y

▪ Assume: SMC protocol is secure, i.e., we
can reason about it using the ideal
world.

▪ Assume: only Alice learns the output

▪ Question: what does Alice learn about
Bob’s input?

Input: x Input: y

SMC Protocol

Output: F(x, y) = x > y

Alice Bob

Answer: if the answer is true Alice learns an
upper bound (x) on Bob’s value, and a

lowerbound otherwise.

Example and caveat
What does Alice learn?

9

▪ As on the previous slide, but now
suppose Alice and Bob run the same
protocol several times.

▪ Bob will use the same input y for every
run.

▪ Question: what can Alice learn about
Bob’s value y?

Input: x Input: y

SMC Protocol

Output: F(x, y) = x > y

Alice Bob

Answer: Alice can change her inputs, she can
then use binary search to learn Bob’s exact

value.

Take Away
Even though the SMC protocol is itself secure,

the composition of the SMC protocol with other
parts of the system does not have to be secure

Threat Models
Honest but Curious vs Malicious

10

▪ So far, treated the SMC protocol as a
black box where parties can only control
what they input.

▪ Must take into account threat model aka
what can parties do. Today we consider
two:

▪ Honest but Curious*: Parties will follow
the SMC protocol honestly, but try to
learn as much as possible from the
messages they receive

▪ Malicious: Parties can arbitrarily deviate
from the SMC protocol to learn as much
as possible

Today’s Class

Mostly in the Honest-but-

Curious setting.

This is not – usually – a
realistic assumption! There

are ways to fix this, but these

are often costly.

Secure Multi-Party Computation
A generic solution?

11

▪ There exist SMC protocols (both 2 party
and multi-party) that can compute any
Boolean circuit

▪ Therefore: SMC protocols are universal:
can solve any problem!

▪ So why do we not always use them?
Custom protocols are often “better”:

• Might use less bandwidth
• Might be faster, i.e., use less computation
• Might use fewer rounds of

communication
• Might work even if all parties are not

online at the same time

Input: x Input: y

SMC Protocol

Output: F(x, y)

Alice Bob

Any logic
circuit!

A two-party secure
multi-party protocol:
Yao’s garbled circuit

12

A logic circuit C

Overview
Yao’s Garbled Circuits

13

Two Parties

Transformation

Protocol for
computing C

Parties are
Honest but Curious

Key Idea
Gates as Truth Tables

14

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Logic Gate

Truth Table

Step 1: Assign random labels to each possible input value

A label

0 𝑊𝐴
0

1 𝑊𝐴
1

B label

0 𝑊𝐵
0

1 𝑊𝐵
1

Step 2: Create encrypted truth table

A B Q

𝑊𝐴
0 𝑊𝐵

0 Enc(𝑊𝐴
0 ∥ 𝑊𝐵

0, 0)

𝑊𝐴
0 𝑊𝐵

1
Enc(𝑊𝐴

0 ∥ 𝑊𝐵
1, 1)

𝑊𝐴
1 𝑊𝐵

0 Enc(𝑊𝐴
1 ∥ 𝑊𝐵

0, 1)

𝑊𝐴
1 𝑊𝐵

1
Enc(𝑊𝐴

1 ∥ 𝑊𝐵
1, 1)

Step 3: Shuffle output
column to create a
garbled gate

Q

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

0, 1)

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

1, 1)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

0, 0)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

1, 1)

Note: we use that if
key is wrong Dec fails

Garbling a Single Gate
Yao’s Garbled Circuits

15

Garbler Evaluator

Step 1. Compute
garbled gate

Logic Gate
Input: a Input: bA label

0 𝑊𝐴
0

1 𝑊𝐴
1

B label

0 𝑊𝐵
0

1 𝑊𝐵
1

Q

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

0, 1)

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

1, 1)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

0, 0)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

1, 1)

Step 2. Send garbled
gate and Garbler’s
input label , 𝑊𝐴

𝑎

Depends on
Garbler’s input a

Step 3. Get label 𝑊𝐵
𝑏

for Evaluator’s input b

Step 4. Find row that
decrypts for 𝑊𝐴

𝑎 ∥ 𝑊𝐵
𝑏

Requires magic protocol! (why?)
Next slide: Oblivious Transfer

Intermezzo
Oblivious Transfer

16

Garbler/
Sender

Evaluator
Receiver

Input: b
B label

0 𝑊𝐵
0

1 𝑊𝐵
1

1-out-of-2
Oblivious Transfer

𝑊𝐵
1

𝑊𝐵
0 b

𝑊𝐵
𝑏

Key Properties:
• Sender learns nothing

about the bit b
• Receiver learns

nothing about 𝑊𝐵
1 −𝑏

17

Simple OT Protocols
(from Public Key encryption)

Garbling a Single Gate
Yao’s Garbled Circuits

18

Garbler Evaluator

Step 1. Compute
garbled gate

Logic Gate
Input: a Input: bA label

0 𝑊𝐴
0

1 𝑊𝐴
1

B label

0 𝑊𝐵
0

1 𝑊𝐵
1

Q

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

0, 1)

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

1, 1)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

0, 0)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

1, 1)

Step 2. Send garbled
gate and Garbler’s
input label , 𝑊𝐴

𝑎

Depends on
Garbler’s input a

Step 3. Send label 𝑊𝐵
𝑏

for Evaluator’s input b

Step 4. Find row that
decrypts for 𝑊𝐴

𝑎 ∥ 𝑊𝐵
𝑏

1-out-of-2
Obvlious transfer

𝑊𝐵
0

𝑊𝐵
1

b
𝑊𝐵

𝑏

Full Circuits
Recursion to the rescue!

19

𝑊𝐴

𝑊𝐵1

𝑊𝐵2

𝑊𝐴∧𝐵

G
en

er
at

io
n

(g
ar

b
lin

g) Step 1. Assign random
labels to each wire

𝑾𝑨 𝑾𝑩𝟏 𝑾𝑩𝟐 𝑊𝐴∧𝐵

0 𝑊𝐴
0 𝑊𝐵1

0 𝑊𝐵2
0 𝑊𝐴∧𝐵

0

1 𝑊𝐴
0 𝑊𝐵1

1 𝑊𝐵2
1 𝑊𝐴∧𝐵

1

AND

Enc(𝑊𝐴
1 ∥ 𝑊𝐵1

0 , 𝑊𝐴∧𝐵
0)

Enc(𝑊𝐴
1 ∥ 𝑊𝐵1

1 , 𝑊𝐴∧𝐵
1)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵1

0 , 𝑊𝐴∧𝐵
0)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵1

1 , 𝑊𝐴∧𝐵
0)

Step 2. Generate garbled gates
and send to the evaluator

OR

Enc(𝑊𝐴∧𝐵
0 ∥ 𝑊𝐵2

1 , 1)

Enc(𝑊𝐴∧𝐵
1 ∥ 𝑊𝐵2

1 , 1)

Enc(𝑊𝐴∧𝐵
1 ∥ 𝑊𝐵2

0 , 1)

Enc(𝑊𝐴∧𝐵
0 ∥ 𝑊𝐵2

0 , 0)

Ev
al

ua
ti

on Step 3. Obtain generator’s
inputs (𝑊𝐴

𝑎)
Step 4. Obtain evaluator’s
(own) inputs (𝑊𝐵1

𝑏1 ,𝑊𝐵2

𝑏2) via
OT

Step 5. Evaluate gates in
order to obtain
intermediate wire values
(𝑊𝐴∧𝐵) and final outputs

Yao’s Garbled Circuits
Properties

20

▪ Evaluating any circuit requires only a
constant number of rounds (one
message to send the garbled circuit; and
a bunch of (parallel) OTs to get the
evaluator’s inputs).

▪ Communication cost is linear in the
number of gates

▪ Computation cost is is linear in the
number of gates

Example: Circuits can be slow. For
example, evaluating 1 AES block: 17
seconds and requires 77 MB of data.

Input: x Input: y

Garbled Circuit

Output: F(x, y)

Alice Bob

A multi-party secure
multi-party protocol:
Ben-Or, Goldwasser,
Wigderson (BGW)

For arithmetic circuits

21

Arithmetic circuit C

Overview
BGW Circuits

22

N Parties

Transformation

Protocol for
computing C

Parties are
Honest but Curious

x
+

Two Settings 23

N Parties. -- They compute
themselves

outsource
data (privately)

N servers
compute

Building Block
Additive Secret Shares

24

N Parties/Servers

Value: x

Operate over a field 𝔽 (for example, integers
modulo a prime p)

▪ Share: given a value 𝑥 ∈ 𝔽 we compute
shares 𝑥1, … , 𝑥𝑁:

• Sample 𝑥2, … , 𝑥𝑁 uniformly at random from 𝔽
• Set 𝑥1 = 𝑥 − σ 𝑖=2

𝑁 𝑥𝑖 (over 𝔽)
• We denote 𝑥 = {𝑥1, … , 𝑥𝑁} the sharing of 𝑥

▪ Reconstruction: given a sharing 𝑥 =
{𝑥1, … , 𝑥𝑁} output 𝑥 = σ𝑖=1

𝑁 𝑥𝑖

𝑥1

𝑥𝑖

𝑥𝑁

Privacy Property: given at
most N – 1 shares, an

adversary learns nothing
about the shared value x

First Step
Sharing Inputs

25All drawings with
N=3 parties

Value: x

𝑥1

𝑥2

𝑥3

Outsourced computation setting:
parties with data secret share their
inputs to the compute nodes

Value: x

Value: y Value: z

x3

z1

P1

P2 P3y3

z2

y1

x2

Input sharing setting: each party
secret shares their inputs to each
of the other parties (and keeps one
share)

Computing on shares
Addition (Add-Protocol)

26

+𝑠

𝑣
𝑡

General Structure/Invariant: the parties in the
protocol hold secret shares of the circuit wire
values.

Here: Party i holds secret shares 𝑠𝑖, 𝑣𝑖 such
that: 𝑠 = σ𝑖 𝑠𝑖 and 𝑣 = σ𝑖 𝑣𝑖.

Goal: Each party must obtain 𝑡𝑖 such that
𝑡 = σ𝑖 𝑡𝑖 = 𝑠 + 𝑣 or in other words 𝑡 = [𝑠 + 𝑣]

Algorithm:
▪ Each party (locally!) sets 𝑡𝑖 = 𝑠𝑖 + 𝑣𝑖

Computing on shares
Addition (Add-K
Protocol)

27

+

𝑠 𝑡

General Structure/Invariant: the parties in the
protocol hold secret shares of the circuit wire
values.

Here: Party i holds secret shares 𝑠𝑖 such that:
𝑠 = σ𝑖 𝑠𝑖 and K is a public value

Goal: Each party must obtain 𝑡𝑖 such that
𝑡 = σ𝑖 𝑡𝑖 = 𝑠 + 𝐾 or in other words 𝑡 = [𝑠 + 𝐾]

Algorithm:
▪ Party 1: locally sets 𝑡1 = 𝑠1 + 𝐾

▪ Other parties i: locally set 𝑡𝑖 = 𝑠𝑖

𝐾

Want to add a
public value K

Computing on shares
Multiplication (Mult-K Protocol)

28

𝑠 𝑡

General Structure/Invariant: the parties in the
protocol hold secret shares of the circuit wire
values.

Exercise :).

𝐾

Want to multiply
by a public
value K

x

Intermezzo
Beaver Triplets

29

Computing multiplication gates is harder. We
use a trick.

A Beaver triplet (a, b, c) such that a and b are
random (in the field) and c = ab.

We assume that the parties hold secret shares
of the Beaver triplet: [a], [b], [c]

For security it is essential that no parties know
the values a, b, c. They can only know their
secret share. As a result: constructing Beaver
triplets is hard. Usual tricks: trusted third party,
using Homomorphic Encryption, or from OT.

Computing on shares
Multiplication (Mul-Protocol)

30

Input: Party i holds secret shares
𝑠𝑖, 𝑣𝑖 such that:

𝑠 = σ𝑖 𝑠𝑖 and 𝑣 = σ𝑖 𝑣𝑖
as well as shares 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, for a
fresh Beaver Triplet (𝑎, 𝑏, 𝑐)

Goal: Each party must obtain 𝑡𝑖
such that 𝑡 = σ𝑖 𝑡𝑖 = 𝑠𝑣 or in other
words 𝑡 = [𝑠𝑣]

A useful identity:
𝑠𝑣 = 𝑠 − 𝑎 + 𝑎 𝑣 − 𝑏 + 𝑏

= d + a e + b
= 𝑑𝑒 + 𝑑𝑏 + 𝑎𝑒 + 𝑎𝑏
= 𝑑𝑒 + 𝑑𝑏 + 𝑒𝑎 + 𝑐

𝑠

𝑣
𝑡x

Algorithm:
1. Each party locally computes a share of

[d] = [s – a] and broadcasts it. Each
party reconstructs and learns d

2. Each party locally computes a share of
[e] = [v – b] and broadcasts it. Each
party reconstructs and learns e

3. Locally compute a share of:
𝑠𝑣 = 𝑑𝑒 + 𝑑 𝑏 + 𝑒 𝑎 + [𝑐]

(note that this requires only additions
and multiplications by constants)

Alternative
Shamir’s Secret Sharing

31

Operate over a field 𝔽 (for example, integers
modulo a prime p)

Additive secret sharing requires all N shares
to reconstruct. To add robustness (at the
cost of privacy), could use Shamir’s secret
sharing so that you can reconstruct given
only t values.

Privacy Property: in a t-out-of-N Shamir
secret sharing scheme, an adversary given
at most t – 1 shares, learns nothing about

the shared value x

▪ Share: given a value 𝑥 ∈ 𝔽 we
compute shares 𝑥1, … , 𝑥𝑁:

• Sample 𝑎1, … , 𝑎𝑡−1 uniformly at
random from 𝔽 to construct
secret-sharing polynomial
𝑓 𝑋 = 𝑥 + 𝑎1𝑋 + ⋯+ 𝑎𝑡−1𝑋

𝑡−1

• Set 𝑥𝑖 = 𝑓 𝑖 for 𝑖 ∈ {1, … , 𝑁}

• We denote 𝑥 = {𝑥1, … , 𝑥𝑁} the
sharing of 𝑥

▪ Reconstruction: given t shares
𝑥𝑖1 , … , 𝑥𝑖𝑡 from parties 𝑖1, … , 𝑖𝑇
reconstruct the secret through
polynomial evaluation.

BGW Circuits
Properties

32

▪ The number of rounds is linear in the
circuit depth (we need openings for
each multiplication gate at each level)

▪ Computation cost is linear in the
number of gates

▪ Communication cost is linear in the
number of multiplication gates.

Practical Performance: Computing
arithmetic circuits can be quite fast only a
few modular computations per gate.

Arithmetic Circuit

Output: F(x1, …, xN)

N Parties

Applications

33

Applications of MPC
Estonian Study

34

▪ Estonian CS programs: 43% of students
failed to graduate. Question: Why?

▪ Hypothesis: everybody gets nice IT job
before graduating

▪ Privacy legislation prevent sharing of
data from Tax Board (10M records) and
Ministry of Education (600k records)

▪ Use of MPC resulted in higher accuracy
than using other data anonymization
techniques (e.g., k-anonymity see Data
Publishing Part I) that were also legally
acceptable

Tax Board Ministry of
Education

Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, Riivo Talviste: Students and Taxes: a Privacy-Preserving Study Using Secure

Computation. Proc. Priv. Enhancing Technol. 2016(3): 117-135 (2016). https://eprint.iacr.org/2015/1159.pdf

https://eprint.iacr.org/2015/1159.pdf

Applications of MPC
Estonian Study II

35

▪ Technical solution built on Sharemind’s
MPC framework that operates on secret-
shared data (e.g., see BGW before)

▪ Challenges faced by Cybernetica:
• Technical implementation was difficult,

especially to run at this scale
• Convince stake-holders that this

approach is actually secure
• Operational support: ensure assumptions

are met, manuals, deployment support

▪ Time to run is massive:
• 384 hours
• With 2x 2-core machine, and 1x 12-core

machine

Tax Board Ministry of
Education

lueks@cispa.de

https://wouterlueks.nl/

Contact

36

Wouter Lueks

CISPA Helmholtz Center for
Information Security

	Default Section
	Slide 1: Secure Multi-Party Computation
	Slide 2: Introduction Secure Multi-Party Computation (SMC)
	Slide 3: Goals What should you learn today?
	Slide 4: Overview SMC on one-slide (2-party version)
	Slide 5: Example Secure Auction
	Slide 6: High Level Structure
	Slide 7: Security Ideal-world equivalent
	Slide 8: Example What does Alice learn?
	Slide 9: Example and caveat What does Alice learn?
	Slide 10: Threat Models Honest but Curious vs Malicious
	Slide 11: Secure Multi-Party Computation A generic solution?
	Slide 12: A two-party secure multi-party protocol: Yao’s garbled circuit
	Slide 13: Overview Yao’s Garbled Circuits
	Slide 14: Key Idea Gates as Truth Tables
	Slide 15: Garbling a Single Gate Yao’s Garbled Circuits
	Slide 16: Intermezzo Oblivious Transfer
	Slide 17
	Slide 18: Garbling a Single Gate Yao’s Garbled Circuits
	Slide 19: Full Circuits Recursion to the rescue!
	Slide 20: Yao’s Garbled Circuits Properties
	Slide 21: A multi-party secure multi-party protocol: Ben-Or, Goldwasser, Wigderson (BGW) For arithmetic circuits
	Slide 22: Overview BGW Circuits
	Slide 23: Two Settings
	Slide 24: Building Block Additive Secret Shares
	Slide 25: First Step Sharing Inputs
	Slide 26: Computing on shares Addition (Add-Protocol)
	Slide 27: Computing on shares Addition (Add-K Protocol)
	Slide 28: Computing on shares Multiplication (Mult-K Protocol)
	Slide 29: Intermezzo Beaver Triplets
	Slide 30: Computing on shares Multiplication (Mul-Protocol)
	Slide 31: Alternative Shamir’s Secret Sharing
	Slide 32: BGW Circuits Properties
	Slide 33: Applications
	Slide 34: Applications of MPC Estonian Study
	Slide 35: Applications of MPC Estonian Study II
	Slide 36: Contact

