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Introduction
Secure Multi-Party Computation 
(SMC)
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Course aim: learn toolbox for privacy engineering

tool
for building PETS

cryptography
as main technique

Network Layer

Application Layer



Goals
What should you learn today?
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▪ Basic understanding of two SMC 
techniques

▪ Know when SMC is a useful tool in 
creating privacy-friendly systems

▪ Understand how to express your 
problem as a circuit to enable MPC

▪ Understand key properties:
• Communication and computation cost
• Trust assumptions
• Guarantees with respect to inputs

▪ Be able to use SMC as a building block 
(by describing which function it 
computes)



Overview
SMC on one-slide (2-party 
version)
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▪ A secure 2-party protocol enables two 
parties with private inputs x and y to 
compute a function F(x, y)

▪ Security property: without either party 
learning anything more than what can 
be derived from the output

▪ Correctness: output is correct

▪ Types of circuits (today): Boolean 
circuits (with logic gates), and arithmetic 
circuits (with addition/multiplication 
gates)

▪ Secure Multi-party Computation: have n 
parties with private inputs x1, …, xn
compute F(x1, …, xn)

Input: x Input: y

SMC Protocol

Output: F(x, y)

Alice Bob



Example
Secure Auction
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▪ In auction, multiple parties bidding for 
an item (say, a house). Want to find the 
party that bid highest. Privacy: without 
revealing anybody else’s bid.

▪ Define function:
𝐹 𝑏𝑖𝑑1, … , 𝑏𝑖𝑑3 = 𝑖, 𝑏𝑖𝑑𝑖 𝑠. 𝑡. ∀𝑗 𝑏𝑖𝑑𝑗 ≤ 𝑏𝑖𝑑𝑖

▪ (This function is not really a circuit, we’ll 
fix that later)

▪ SMC protocol guarantees: none of the 
parties learn more than the output.

Input: bid1 Input: bid2 Input: bid3

SMC Protocol

Output: F(bid1 , bid2 , bid3)



High Level Structure 6

A boolean/arithmetic circuit C 
that realizes / implements F

SMC Protocol/Transformation

Protocol for 
computing C

High-Level 
description of 
function F to 

compute

Your Problem

Example function F:
𝐹 𝑏𝑖𝑑1, … , 𝑏𝑖𝑑3 = 𝑖, 𝑏𝑖𝑑𝑖 𝑠. 𝑡. ∀𝑗 𝑏𝑖𝑑𝑗 ≤ 𝑏𝑖𝑑𝑖

Example Logic Circuit C
(Not implementing F on the left)



Security
Ideal-world equivalent
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▪ Security property: without either party 

learning anything more than what can 
be derived from the output

Input: x Input: y

SMC Protocol

Output: F(x, y)

Alice Bob

Input: x Input: y

Output: F(x, y)

Alice Bob

Trusted Party

x y

REAL WORLD IDEAL WORLD

same
leakage

When reasoning about SMC 
protocols, you can always 

“pretend” that they are executed 
in the ideal world. This is great, 

because now you do not need to 

think about the details of the 
construction.



Example
What does Alice learn?
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▪ Simple example function: F(x, y) = x > y

▪ Assume: SMC protocol is secure, i.e., we 
can reason about it using the ideal 
world.

▪ Assume: only Alice learns the output

▪ Question: what does Alice learn about 
Bob’s input?

Input: x Input: y

SMC Protocol

Output: F(x, y) = x > y

Alice Bob

Answer: if the answer is true Alice learns an 
upper bound (x) on Bob’s value, and a 

lowerbound otherwise.



Example and caveat
What does Alice learn?
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▪ As on the previous slide, but now 
suppose Alice and Bob run the same 
protocol several times.

▪ Bob will use the same input y for every 
run.

▪ Question: what can Alice learn about 
Bob’s value y?

Input: x Input: y

SMC Protocol

Output: F(x, y) = x > y

Alice Bob

Answer: Alice can change her inputs, she can 
then use binary search to learn Bob’s exact 

value.

Take Away
Even though the SMC protocol is itself secure, 

the composition of the SMC protocol with other 
parts of the system does not have to be secure



Threat Models
Honest but Curious vs Malicious
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▪ So far, treated the SMC protocol as a 
black box where parties can only control 
what they input.

▪ Must take into account threat model aka 
what can parties do. Today we consider 
two:

▪ Honest but Curious*: Parties will follow 
the SMC protocol honestly, but try to 
learn as much as possible from the 
messages they receive

▪ Malicious: Parties can arbitrarily deviate 
from the SMC protocol to learn as much 
as possible

Today’s Class

Mostly in the Honest-but-

Curious setting.

This is not – usually – a 
realistic assumption! There 

are ways to fix this, but these 

are often costly.



Secure Multi-Party Computation
A generic solution?
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▪ There exist SMC protocols (both 2 party 
and multi-party) that can compute any 
Boolean circuit

▪ Therefore: SMC protocols are universal: 
can solve any problem!

▪ So why do we not always use them? 
Custom protocols are often “better”:

• Might use less bandwidth
• Might be faster, i.e., use less computation
• Might use fewer rounds of 

communication
• Might work even if all parties are not 

online at the same time

Input: x Input: y

SMC Protocol

Output: F(x, y)

Alice Bob

Any logic 
circuit!



A two-party secure 
multi-party protocol:
Yao’s garbled circuit
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A logic circuit C

Overview
Yao’s Garbled Circuits
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Two Parties

Transformation

Protocol for 
computing C

Parties are
Honest but Curious



Key Idea
Gates as Truth Tables 
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A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Logic Gate

Truth Table

Step 1: Assign random labels to each possible input value

A label

0 𝑊𝐴
0

1 𝑊𝐴
1

B label

0 𝑊𝐵
0

1 𝑊𝐵
1

Step 2: Create encrypted truth table

A B Q

𝑊𝐴
0 𝑊𝐵

0 Enc(𝑊𝐴
0 ∥ 𝑊𝐵

0, 0)

𝑊𝐴
0 𝑊𝐵

1
Enc(𝑊𝐴

0 ∥ 𝑊𝐵
1, 1)

𝑊𝐴
1 𝑊𝐵

0 Enc(𝑊𝐴
1 ∥ 𝑊𝐵

0, 1)

𝑊𝐴
1 𝑊𝐵

1
Enc(𝑊𝐴

1 ∥ 𝑊𝐵
1, 1)

Step 3: Shuffle output 
column to create a 
garbled gate

Q

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

0, 1)

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

1, 1)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

0, 0)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

1, 1)

Note: we use that if 
key is wrong Dec fails



Garbling a Single Gate
Yao’s Garbled Circuits
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Garbler Evaluator

Step 1. Compute 
garbled gate

Logic Gate
Input: a Input: bA label

0 𝑊𝐴
0

1 𝑊𝐴
1

B label

0 𝑊𝐵
0

1 𝑊𝐵
1

Q

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

0, 1)

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

1, 1)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

0, 0)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

1, 1)

Step 2. Send garbled 
gate and Garbler’s 
input label , 𝑊𝐴

𝑎

Depends on 
Garbler’s input a

Step 3. Get label 𝑊𝐵
𝑏

for Evaluator’s input b

Step 4. Find row that 
decrypts for 𝑊𝐴

𝑎 ∥ 𝑊𝐵
𝑏

Requires magic protocol! (why?)
Next slide: Oblivious Transfer



Intermezzo
Oblivious Transfer
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Garbler/
Sender

Evaluator
Receiver

Input: b
B label

0 𝑊𝐵
0

1 𝑊𝐵
1

1-out-of-2
Oblivious Transfer

𝑊𝐵
1

𝑊𝐵
0 b

𝑊𝐵
𝑏

Key Properties:
• Sender learns nothing 

about the bit b
• Receiver learns 

nothing about 𝑊𝐵
1 −𝑏
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Simple OT Protocols
(from Public Key encryption)



Garbling a Single Gate
Yao’s Garbled Circuits
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Garbler Evaluator

Step 1. Compute 
garbled gate

Logic Gate
Input: a Input: bA label

0 𝑊𝐴
0

1 𝑊𝐴
1

B label

0 𝑊𝐵
0

1 𝑊𝐵
1

Q

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

0, 1)

Enc(𝑊𝐴
1 ∥ 𝑊𝐵

1, 1)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

0, 0)

Enc(𝑊𝐴
0 ∥ 𝑊𝐵

1, 1)

Step 2. Send garbled 
gate and Garbler’s 
input label , 𝑊𝐴

𝑎

Depends on 
Garbler’s input a

Step 3. Send label 𝑊𝐵
𝑏

for Evaluator’s input b

Step 4. Find row that 
decrypts for 𝑊𝐴

𝑎 ∥ 𝑊𝐵
𝑏

1-out-of-2 
Obvlious transfer

𝑊𝐵
0

𝑊𝐵
1

b
𝑊𝐵

𝑏



Full Circuits
Recursion to the rescue!
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𝑊𝐴

𝑊𝐵1

𝑊𝐵2

𝑊𝐴∧𝐵

G
en

er
at

io
n 

(g
ar

b
lin

g) Step 1. Assign random 
labels to each wire

𝑾𝑨 𝑾𝑩𝟏 𝑾𝑩𝟐 𝑊𝐴∧𝐵

0 𝑊𝐴
0 𝑊𝐵1

0 𝑊𝐵2
0 𝑊𝐴∧𝐵

0

1 𝑊𝐴
0 𝑊𝐵1

1 𝑊𝐵2
1 𝑊𝐴∧𝐵

1

AND

Enc(𝑊𝐴
1 ∥ 𝑊𝐵1

0 , 𝑊𝐴∧𝐵
0 )

Enc(𝑊𝐴
1 ∥ 𝑊𝐵1

1 , 𝑊𝐴∧𝐵
1 )

Enc(𝑊𝐴
0 ∥ 𝑊𝐵1

0 , 𝑊𝐴∧𝐵
0 )

Enc(𝑊𝐴
0 ∥ 𝑊𝐵1

1 , 𝑊𝐴∧𝐵
0 )

Step 2. Generate garbled gates 
and send to the evaluator

OR

Enc(𝑊𝐴∧𝐵
0 ∥ 𝑊𝐵2

1 , 1)

Enc(𝑊𝐴∧𝐵
1 ∥ 𝑊𝐵2

1 , 1)

Enc(𝑊𝐴∧𝐵
1 ∥ 𝑊𝐵2

0 , 1)

Enc(𝑊𝐴∧𝐵
0 ∥ 𝑊𝐵2

0 , 0)

Ev
al

ua
ti

on Step 3. Obtain generator’s 
inputs (𝑊𝐴

𝑎)
Step 4. Obtain evaluator’s 
(own) inputs (𝑊𝐵1

𝑏1 ,𝑊𝐵2

𝑏2) via 
OT

Step 5. Evaluate gates in 
order to obtain 
intermediate wire values 
(𝑊𝐴∧𝐵) and final outputs



Yao’s Garbled Circuits
Properties

20

▪ Evaluating any circuit requires only a 
constant number of rounds (one 
message to send the garbled circuit; and 
a bunch of (parallel) OTs to get the 
evaluator’s inputs).

▪ Communication cost is linear in the 
number of gates

▪ Computation cost is is linear in the 
number of gates

Example: Circuits can be slow. For 
example, evaluating 1 AES block: 17 
seconds and requires 77 MB of data. 

Input: x Input: y

Garbled Circuit

Output: F(x, y)

Alice Bob



A multi-party secure 
multi-party protocol:
Ben-Or, Goldwasser, 
Wigderson (BGW)

For arithmetic circuits

21



Arithmetic circuit C

Overview
BGW Circuits
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N Parties

Transformation

Protocol for 
computing C

Parties are
Honest but Curious

x
+



Two Settings 23

N Parties. -- They compute 
themselves

outsource
data (privately)

N servers
compute



Building Block
Additive Secret Shares
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N Parties/Servers

Value: x

Operate over a field 𝔽 (for example, integers 
modulo a prime p)

▪ Share: given a value 𝑥 ∈ 𝔽 we compute 
shares 𝑥1, … , 𝑥𝑁:

• Sample 𝑥2, … , 𝑥𝑁 uniformly at random from 𝔽
• Set 𝑥1 = 𝑥 − σ 𝑖=2

𝑁 𝑥𝑖 (over 𝔽)
• We denote 𝑥 = {𝑥1, … , 𝑥𝑁} the sharing of 𝑥

▪ Reconstruction: given a sharing 𝑥 =
{𝑥1, … , 𝑥𝑁} output 𝑥 = σ𝑖=1

𝑁 𝑥𝑖

𝑥1

𝑥𝑖

𝑥𝑁

Privacy Property: given at 
most N – 1 shares, an 

adversary learns nothing 
about the shared value x



First Step
Sharing Inputs

25All drawings with 
N=3 parties

Value: x

𝑥1

𝑥2

𝑥3

Outsourced computation setting: 
parties with data secret share their 
inputs to the compute nodes

Value: x

Value: y Value: z

x3

z1

P1

P2 P3y3

z2

y1

x2

Input sharing setting: each party 
secret shares their inputs to each 
of the other parties (and keeps one 
share)



Computing on shares
Addition (Add-Protocol)
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+𝑠

𝑣
𝑡

General Structure/Invariant: the parties in the 
protocol hold secret shares of the circuit wire 
values.

Here: Party i holds secret shares 𝑠𝑖, 𝑣𝑖 such 
that: 𝑠 = σ𝑖 𝑠𝑖 and 𝑣 = σ𝑖 𝑣𝑖.

Goal: Each party must obtain 𝑡𝑖 such that
𝑡 = σ𝑖 𝑡𝑖 = 𝑠 + 𝑣 or in other words  𝑡 = [𝑠 + 𝑣]

Algorithm:
▪ Each party (locally!) sets 𝑡𝑖 = 𝑠𝑖 + 𝑣𝑖



Computing on shares
Addition (Add-K 
Protocol)
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+

𝑠 𝑡

General Structure/Invariant: the parties in the 
protocol hold secret shares of the circuit wire 
values.

Here: Party i holds secret shares 𝑠𝑖 such that: 
𝑠 = σ𝑖 𝑠𝑖 and K is a public value

Goal: Each party must obtain 𝑡𝑖 such that
𝑡 = σ𝑖 𝑡𝑖 = 𝑠 + 𝐾 or in other words  𝑡 = [𝑠 + 𝐾]

Algorithm:
▪ Party 1: locally sets 𝑡1 = 𝑠1 + 𝐾

▪ Other parties i: locally set 𝑡𝑖 = 𝑠𝑖

𝐾

Want to add a 
public value K



Computing on shares
Multiplication (Mult-K Protocol)
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𝑠 𝑡

General Structure/Invariant: the parties in the 
protocol hold secret shares of the circuit wire 
values.

Exercise :).

𝐾

Want to multiply 
by a public 
value K

x



Intermezzo
Beaver Triplets
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Computing multiplication gates is harder. We 
use a trick.

A Beaver triplet (a, b, c) such that a and b are 
random (in the field) and c = ab.

We assume that the parties hold secret shares 
of the Beaver triplet: [a], [b], [c]

For security it is essential that no parties know 
the values a, b, c. They can only know their 
secret share. As a result: constructing Beaver 
triplets is hard. Usual tricks: trusted third party, 
using Homomorphic Encryption, or from OT.



Computing on shares
Multiplication (Mul-Protocol)
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Input: Party i holds secret shares 
𝑠𝑖, 𝑣𝑖 such that:

𝑠 = σ𝑖 𝑠𝑖 and 𝑣 = σ𝑖 𝑣𝑖
as well as shares 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, for a 
fresh Beaver Triplet (𝑎, 𝑏, 𝑐)

Goal: Each party must obtain 𝑡𝑖
such that 𝑡 = σ𝑖 𝑡𝑖 = 𝑠𝑣 or in other 
words  𝑡 = [𝑠𝑣]

A useful identity:
𝑠𝑣 = 𝑠 − 𝑎 + 𝑎 𝑣 − 𝑏 + 𝑏

= d + a e + b
= 𝑑𝑒 + 𝑑𝑏 + 𝑎𝑒 + 𝑎𝑏
= 𝑑𝑒 + 𝑑𝑏 + 𝑒𝑎 + 𝑐

𝑠

𝑣
𝑡x

Algorithm:
1. Each party locally computes a share of 

[d] = [s – a] and broadcasts it. Each 
party reconstructs and learns d

2. Each party locally computes a share of 
[e] = [v – b] and broadcasts it. Each 
party reconstructs and learns e

3. Locally compute a share of:
𝑠𝑣 = 𝑑𝑒 + 𝑑 𝑏 + 𝑒 𝑎 + [𝑐]

(note that this requires only additions 
and multiplications by constants)



Alternative
Shamir’s Secret Sharing

31

Operate over a field 𝔽 (for example, integers 
modulo a prime p)

Additive secret sharing requires all N shares 
to reconstruct. To add robustness (at the 
cost of privacy), could use Shamir’s secret 
sharing so that you can reconstruct given 
only t values.

Privacy Property: in a t-out-of-N Shamir 
secret sharing scheme, an adversary given 
at most t – 1 shares, learns nothing about 

the shared value x

▪ Share: given a value 𝑥 ∈ 𝔽 we 
compute shares 𝑥1, … , 𝑥𝑁:

• Sample 𝑎1, … , 𝑎𝑡−1 uniformly at 
random from 𝔽 to construct 
secret-sharing polynomial 
𝑓 𝑋 = 𝑥 + 𝑎1𝑋 + ⋯+ 𝑎𝑡−1𝑋

𝑡−1

• Set 𝑥𝑖 = 𝑓 𝑖 for 𝑖 ∈ {1, … , 𝑁}

• We denote 𝑥 = {𝑥1, … , 𝑥𝑁} the 
sharing of 𝑥

▪ Reconstruction: given t shares 
𝑥𝑖1 , … , 𝑥𝑖𝑡 from parties 𝑖1, … , 𝑖𝑇
reconstruct the secret through 
polynomial evaluation.



BGW Circuits
Properties

32

▪ The number of rounds is linear in the 
circuit depth (we need openings for 
each multiplication gate at each level)

▪ Computation cost is linear in the 
number of gates

▪ Communication cost is linear in the 
number of multiplication gates.

Practical Performance: Computing 
arithmetic circuits can be quite fast only a 
few modular computations per gate.

Arithmetic Circuit

Output: F(x1, …, xN)

N Parties



Applications

33



Applications of MPC
Estonian Study

34

▪ Estonian CS programs: 43% of students 
failed to graduate. Question: Why?

▪ Hypothesis: everybody gets nice IT job 
before graduating

▪ Privacy legislation prevent sharing of 
data from Tax Board (10M records) and 
Ministry of Education (600k records)

▪ Use of MPC resulted in higher accuracy 
than using other data anonymization 
techniques (e.g., k-anonymity see Data 
Publishing Part I) that were also legally 
acceptable

Tax Board Ministry of 
Education 

Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, Riivo Talviste: Students and Taxes: a Privacy-Preserving Study Using Secure 

Computation. Proc. Priv. Enhancing Technol. 2016(3): 117-135 (2016). https://eprint.iacr.org/2015/1159.pdf

https://eprint.iacr.org/2015/1159.pdf


Applications of MPC
Estonian Study II

35

▪ Technical solution built on Sharemind’s
MPC framework that operates on secret-
shared data (e.g., see BGW before)

▪ Challenges faced by Cybernetica:
• Technical implementation was difficult, 

especially to run at this scale
• Convince stake-holders that this 

approach is actually secure
• Operational support: ensure assumptions 

are met, manuals, deployment support

▪ Time to run is massive:
• 384 hours
• With 2x 2-core machine, and 1x 12-core 

machine

Tax Board Ministry of 
Education 



lueks@cispa.de

https://wouterlueks.nl/

Contact

36

Wouter Lueks

CISPA Helmholtz Center for
Information Security
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